After successful completion of the course, students are able to apply the basic concepts and laws of physics taught in the corresponding lecture to solve fundamental problems in rigid body dynamics. With the help of such mathematical solutions, students can obtain concrete statements about the behavior of the basic mechanical systems, control them with respect to plausibility and, if necessary, explain the validity of the solutions.
In particular, students are able to
- determine velocity and acceleration with respect to different systems of reference for any arbitrary point in a system of a kinematic chain with joints as a function of given coordinates and their derivatives and represent those quantities in vector form in different coordinate systems,
- determine the relationship between forces and motion using Newton's and Euler's principles for solid bodies; determine and solve the equations of motion for rigid body systems and investigate the constraining forces, determine the mechanical energy of a rigid-body system and use the relationship between energy, work and power to construct the equation of motion for systems with one degree of freedom,
- analyze the behavior of rotors and rotating machine parts, especially in connection with static and dynamic unbalance;
- apply the elementary impact theory to plane systems of rigid bodies;
- derive and linearize the equation of motion for oscillating mechanical systems with one degree of freedom and analyze their behavior in case of a free oscillation or as harmonically excited system.
In the exercise course (UE), exercises matching the content of the corresponding lecture are solved. Constitutive components of each solution process are the identification of suitable physical approaches, their mathematical implementation and application, the physical interpretation of the mathematical solutions, and the critical examination of the results.
The students should be able to understand the necessity of a fundamental theoretical knowledge in the field of dynamics. Based on the basic laws, they should be able to develop solution strategies for more complex problems by using suitable combinations of these laws.
Exercise
Students work out solutions independently for a given task and get support from the lecturer. In addition to that, tutors accompany the exercises in order to support the students in finding correct solutions and to answer any questions that may arise. At the end of the lecture, for each of the examples, a possible solution is presented, whereby correlations to the theoretical principles are established and alternative solution strategies are also given.
A preliminary discussion via ZOOM will be held together with the lecture Mechanik 2 VO.
Registration in TISS is required to participate in the exercise lecture . This will automatically direct you in the TUWEL course of this course.
Please consult the FAQs of this course for general questions. Please post your questions in the TUWEL discussion forum for this course if your question is not answered by the FAQs.
Please address any individual organizational questions exclusively to Mechanik2UE@tuwien.ac.at.
The student has to be enrolled for at least one of the studies listed below
Lehrunterlagen:
Die Angaben der Übungsbeispiele stehen für Sie im TUWEL-Kurs als Download zur Verfügung und können auch in gedruckter Form während der Sekretariatssprechstunden am Institut erworben werden - Preis: 2€.
Die Lösungen zu den Beispielen werden sukzessive im TUWEL-Kurs freigeschalten.
Weiterführende Literatur:
Gamer, U.; Mack, W.:
Mechanik – Ein einführendes Lehrbuch für Studierende der technischen Wissenschaften. Springer Verlag Wien, 1999. ISBN: 3-211-82854-0.
Parkus, H.:
Mechanik der festen Körper. Springer, 2005. ISBN: 978-3-211-80777-4.
Magnus, K.; Müller-Slany H.H.:
Grundlagen der Technischen Mechanik. Teubner Stuttgart, 2006. ISBN: 978-3-8351-0007-7.
Müller-Slany H.H.:
Aufgaben und Lösungsmethodik Technische Mechanik. Springer Wiesbaden, 2018. ISBN: 978-3-658-22419-6.
Lehmann, T.:
Elemente der Mechanik: 3. Kinetik. Vieweg Braunschweig, 1977. ISBN: 3-528-19197-X.
Lugner, P.; Desoyer, K,: Novak, A.:
Technische Mechanik – Aufgaben und Lösungen, Springer Verlag Wien, 1992. ISBN: 3-211-81717-4.
Gross, D.; Hauger, W.; Schröder, J. ; Wall, W. A.:
Technische Mechanik 3: Kinetik. Springer Berlin Heidelberg, 2019. ISBN: 978-3-662-59550-3.
Gross, D.; Ehlers, W.; Schröder, J.; Müller, R.:
Formeln und Aufgaben zur Technischen Mechanik 3: Kinetik, Hydrodynamik. Springer Berlin Heidelberg, 2019. ISBN: 978-3-662-59681-4.