Die Schwingungstechnik nimmt in zunehmendem Maße eine immer größer Bedeutung für den Menschen und die Umwelt ein. Überall wo Schwingungen bzw. Vibrationen und Stöße sowie Körper- und Luftschall auftreten, können Schäden und Beeinträchtigungen an Menschen und an Maschinen entstehen. Geräusch- und Schwingungskomfort bestimmen maßgeblich die Klasse eines Produktes sowie die Qualität am Arbeitsplatz.
Die Vorlesung beginnt mit einer Klassifizierung von Messsignalen und deren charakteristischen Kenngrößen. Eine besondere Bedeutung wird dabei der Darstellung im Zeit- und Frequenzbereich beigemessen. In diesem Zusammenhang werden die Fouriertransformation von Signalen und Systemen (Einfreiheitsgradschwinger), die Darstellung von periodischen Signalen mittels Fourierreihe und die diskrete Fouriertransformation von digitalisierten Messsignalen beschrieben.
Das anschließende Kapitel 3 beschäftigt sich eingehend mit der Modellierung von linearen Schwingern mit einem Freiheitsgrad. Dabei wird sowohl die Lösung im Frequenzbereich (Amplituden- und Phasengang, Übertragungsfunktion) als auch im Zeitbereich (Impulsantwort) besprochen. Ein besonderer Schwerpunkt wird auf die Methoden der Schwingungsisolation bei
Maschinenaufstellung gelegt und dabei sowohl die Fundamentierung bei harmonischer als auch stoßhafter Anregung diskutiert. Kapitel 4 beinhaltet die Grundlagen des Messens mechanischer Größen, beginnend von der Struktur von Messeinrichtungen bis hin zu elektrischen Schaltungen, welche die Änderung eines Ohmschen Widerstandes, einer Induktivität, einer Kapazität, etc. in eine Spannungsänderung überführt (Messbrückenschaltung, Trägerfrequenz-Brückenverstärker, Ladungsverstärker, etc.). Das anschließende Kapitel 5 diskutiert dann eingehend alle wesentlichen Wandlungsprinzipien (ohmscher, induktiver, kapazitiver, piezoelektrischer Wandler), welche zur Messung von Position, Geschwindigkeit, Beschleunigung, Kraft, Moment, etc. eingesetzt werden. Besonderer Fokus wird auf die Schwingungsmesstechnik gelegt.
In Kapitel 6 werden die für ein gesamtes Messgerät charakterisierenden Größen Messbereich, Messempfindlichkeit und Messwertauflösung sowie dynamisches Verhalten besprochen. Zur Angabe eines Messergebnisse ist die Kenntnis des Messfehlers (systematischer und stochastischer Messfehler) erforderlich. Abschließend werden in diesem Kapitel noch die Grundlagen von Digital-Multimetern (Vielfachmessgeräte) besprochen.
Kapitel 7 behandelt eingehend stationäre Drehschwingungen in Antriebsaggregaten beginnend von der Modellbildung von Drehschwingern, Mehrfreiheitsgraddrehschwingsysteme, Transformation und Reduktion von Systemen mit Getrieben, Eigenwertanalyse ungedämpfter Drehschwingungssystemen und stationär
erzwungene Torsionsschwingungen in linearen Antriebssystemen.
Aufgrund der Kombination aus Mechanik und Elektrotechnik kann diese Vorlesung als mechatronische Vorlesung betrachtet werden und es erfordert Vorkenntnisse aus der Mathematik, Mechanik und Elektrotechnik.