202.664 Strength of Materials
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2023W, VO, 3.0h, 4.5EC
TUWELLectureTube

Properties

  • Semester hours: 3.0
  • Credits: 4.5
  • Type: VO Lecture
  • LectureTube course
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to to explain fundamental concepts of continuum mechanics and strength theory and accordingly derive theoretical relationships between essential physical quantities. In particular, after the introduction of volume and surface force densities, the students are able to derive the following laws from the integral representation of the equilibrium of forces in a continuous body: the cut principle, Cauchy's fundamental theorem (tetrahedron lemma) with the symmetrical stress tensor, as well as the local equilibrium conditions. The students can explain the meaning of principal stresses and normal as well as shear stresses on arbitrarily located surface elements using Mohr's circles, as well as the role that these quantities and of stress invariants in general play in the development of strength criteria. In this context, they can explain the areas of application of the criteria according to von Mises, Drucker-Prager, Rankine, Tresca, Mohr-Coulomb, as well as a plane anisotropic strength criterion. The students know the concepts of the reference and moment system and can derive displacement gradient tensors and distortion tensors (Green-Lagrange, linearised form) from these layers; using working and power principles, they can link the linearised distortion tensors with stress tensors (elastic energy, symmetry of elasticity tensors). Furthermore, they can derive different bar theories (strain, bending, torsion, buckling) from the 3D continuum theory using the principle of virtual powers, and thus establish relationships between stresses and stress resultants (normal forces, transverse forces, moments). Furthermore, the students can solve numerical tasks for the above-mentioned concepts.

Subject of course

Equilibrium on the continuum; stress tensor; strength criteria; deformation of the continuum; distortion tensor; work; energy; elasticity; principle of virtual powers; isotropy-anisotropy-orthotropy; theory of extension bars; theory of trusses; theory of slender bending bars; theory of torsion bars; theory of buckling bars

Teaching methods

Lecture; presentation of full-text lecture notes with formulae and numerical exercises.

Mode of examination

Written and oral

Additional information

The lectures and excercises are being held in hybrid form, meaning they are held in presence, while also being transmitted via LiveStream - the link can be found on TUWEL.

The first lecture is scheduled for Wednesday, 4th October 2023, 13h15(s.t.)-14h45.
Also, on Wednesday, 04th October 2023, and Thursday 5th October 2023 15h15(s.t.)-16h45, there will each be an additional VO (instead of the UE).

More information on the schedule can be found in the calender, available in the download area.
For questions concerning the lecturecourses contact A. Razgordanisharahi, R. Scharf or H. Höld. Contact details: https://www.tuwien.at/cee/imws/fest/team

In case of suspensions of the classroom teaching, IMWS-E202 uses TUWEL as primary communication channel. The lectures will be transmitted via LiveStream - the link can be found on TUWEL. Written exams will then also be held via TUWEL.

Password TUWEL-Course: fest

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed13:00 - 15:0004.10.2023 - 24.01.2024HS 8 Heinz Parkus - CEE Vorlesung
Wed15:00 - 17:0004.10.2023HS 8 Heinz Parkus - CEE Vorlesung
Thu13:00 - 15:0005.10.2023 - 18.01.2024HS 8 Heinz Parkus - CEE Vorlesung
Thu15:00 - 17:0005.10.2023HS 8 Heinz Parkus - CEE Vorlesung
Tue10:00 - 12:0016.01.2024HS 8 Heinz Parkus - CEE Vorlesung
Strength of Materials - Single appointments
DayDateTimeLocationDescription
Wed04.10.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed04.10.202315:00 - 17:00HS 8 Heinz Parkus - CEE Vorlesung
Thu05.10.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu05.10.202315:00 - 17:00HS 8 Heinz Parkus - CEE Vorlesung
Wed11.10.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu12.10.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed18.10.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu19.10.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed25.10.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed08.11.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu09.11.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu16.11.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed22.11.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu23.11.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed29.11.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu30.11.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed06.12.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu07.12.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed13.12.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu14.12.202313:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung

Examination modalities

Written and oral exam in presence.

Participation in the oral exam is only possible after successfully passing the written exam. Seperate registration via TISS required.

Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Mon14:00 - 18:0010.06.2024Seminarraum AE U1 - 4 written20.05.2024 08:00 - 07.06.2024 08:00TISSschriftliche Prüfung Festigkeitslehre 10.06.2024
Fri09:00 - 17:0021.06.2024Seminarraum AA 02 – 1 oral27.05.2024 08:00 - 18.06.2024 08:00TISSmündliche Prüfung Festigkeitslehre 21.06.2024
Mon10:00 - 13:0016.09.2024HS 17 Friedrich Hartmann - ARCH written26.08.2024 08:00 - 13.09.2024 08:00TISSschriftliche Prüfung Festigkeitslehre 16.09.2024
Fri09:00 - 17:0027.09.2024Seminarraum AA 02 – 1 oral02.09.2024 08:00 - 24.09.2024 08:00TISSmündliche Prüfung Festigkeitslehre 27.09.2024
Mon - 21.10.2024written30.09.2024 08:00 - 18.10.2024 08:00TISSschriftliche Prüfung Festigkeitslehre 16.10.2023
Tue - 29.10.2024oral30.09.2024 08:00 - 23.10.2024 08:00TISSmündliche Prüfung Festigkeitslehre 31.10.2023 (Zusatztermin bei vielen Anmeldungen)
Mon - 04.11.2024oral07.10.2024 08:00 - 30.10.2024 07:00TISSmündliche Prüfung Festigkeitslehre 30.10.2023 (Ersatztermin f. 27.10.2023)
Mon - 25.11.2024written04.11.2024 08:00 - 22.11.2024 08:00TISSschriftliche Prüfung Festigkeitslehre 20.11.2023
Wed - 11.12.2024oral02.12.2024 08:00 - 05.12.2024 08:00TISSmündliche Prüfung Festigkeitslehre 13.12.2023
Mon - 16.12.2024oral18.11.2024 08:00 - 12.12.2024 08:00TISSmündliche Prüfung Festigkeitslehre 11.12.2023
Mon - 13.01.2025written23.12.2024 08:00 - 10.01.2025 08:00TISSschriftliche Prüfung Festigkeitslehre 08.01.2024
Fri - 17.01.2025oral30.12.2024 08:00 - 14.01.2025 08:00TISSmündliche Prüfung Festigkeitslehre 19.01.2024
Mon - 03.03.2025written10.02.2025 08:00 - 28.02.2025 08:00TISSschriftliche Prüfung Festigkeitslehre 4.3.2024
Tue - 18.03.2025oral17.02.2025 08:00 - 11.03.2025 08:00TISSmündliche Prüfung Festigkeitslehre 19.03.2024 (Zusatztermin bei vielen Anmeldungen)
Fri - 21.03.2025oral24.02.2025 08:00 - 18.03.2025 08:00TISSmündliche Prüfung Festigkeitslehre 15.03.2024
Mon - 05.05.2025written14.04.2025 08:00 - 02.05.2025 08:00TISSschriftliche Prüfung Festigkeitslehre 6.05.2024
Fri - 23.05.2025oral05.05.2025 08:00 - 20.05.2025 08:00TISSmündliche Prüfung Festigkeitslehre 17.05.2024
Mon - 09.06.2025written19.05.2025 08:00 - 06.06.2025 08:00TISSschriftliche Prüfung Festigkeitslehre 10.06.2024
Fri - 27.06.2025oral02.06.2025 08:00 - 24.06.2025 08:00TISSmündliche Prüfung Festigkeitslehre 21.06.2024
Mon - 15.09.2025written25.08.2025 08:00 - 12.09.2025 08:00TISSschriftliche Prüfung Festigkeitslehre 16.09.2024

Course registration

Not necessary

Curricula

Study CodeObligationSemesterPrecon.Info
033 265 Civil Engineering Mandatory3. SemesterSTEOP
Course requires the completion of the introductory and orientation phase

Literature

Documents will be available online via TUWEL.

Additional Literature:

Mang, H.A, and Hofstetter, G.: Festigkeitslehre, Springer

Previous knowledge

Knowledge from lectures Mathematics 1 and 2, as well as Building Mechanics and Mechanics 1 adviseable.

Accompanying courses

Continuative courses

Miscellaneous

Language

German