202.664 Strength of Materials
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2022W, VO, 3.0h, 4.5EC


  • Semester hours: 3.0
  • Credits: 4.5
  • Type: VO Lecture
  • LectureTube course
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to to explain fundamental concepts of continuum mechanics and strength theory and accordingly derive theoretical relationships between essential physical quantities. In particular, after the introduction of volume and surface force densities, the students are able to derive the following laws from the integral representation of the equilibrium of forces in a continuous body: the cut principle, Cauchy's fundamental theorem (tetrahedron lemma) with the symmetrical stress tensor, as well as the local equilibrium conditions. The students can explain the meaning of principal stresses and normal as well as shear stresses on arbitrarily located surface elements using Mohr's circles, as well as the role that these quantities and of stress invariants in general play in the development of strength criteria. In this context, they can explain the areas of application of the criteria according to von Mises, Drucker-Prager, Rankine, Tresca, Mohr-Coulomb, as well as a plane anisotropic strength criterion. The students know the concepts of the reference and moment system and can derive displacement gradient tensors and distortion tensors (Green-Lagrange, linearised form) from these layers; using working and power principles, they can link the linearised distortion tensors with stress tensors (elastic energy, symmetry of elasticity tensors). Furthermore, they can derive different bar theories (strain, bending, torsion, buckling) from the 3D continuum theory using the principle of virtual powers, and thus establish relationships between stresses and stress resultants (normal forces, transverse forces, moments). Furthermore, the students can solve numerical tasks for the above-mentioned concepts.

Subject of course

Equilibrium on the continuum; stress tensor; strength criteria; deformation of the continuum; distortion tensor; work; energy; elasticity; principle of virtual powers; isotropy-anisotropy-orthotropy; theory of extension bars; theory of trusses; theory of slender bending bars; theory of torsion bars; theory of buckling bars


Teaching methods

Lecture; presentation of full-text lecture notes with formulae and numerical exercises;

Mode of examination

Written and oral

Additional information

The lectures and excercises are being held in hybrid form, meaning they are held in presence, while also being transmitted via LiveStream - the link can be found on TUWEL.

The first lecture is scheduled for Wednesday, 5th October 2022, 13h15(s.t.)-14h45.

Also, on Wednesday, 05th October 2022, and Thursday 6th October 2022 15h15(s.t.)-16h45, there will each be an additional VO (instead of the UE). More information on the schedule can be found in the calender, available in the download area.

For questions concerning the lecturecourses contact L. Pircher, A. Razgordanisharahi or H. Höld. Contact details: https://www.imws.tuwien.ac.at/en/home/

In case of suspensions of the classroom teaching, IMWS-E202 uses TUWEL as primary communication channel. The lectures will be transmitted via LiveStream - the link can be found on TUWEL. Written exams will then also be held via TUWEL.

Password TUWEL-Course: fest



Course dates

Wed13:00 - 15:0005.10.2022 - 25.01.2023HS 8 Heinz Parkus - CEE Vorlesung
Wed15:00 - 17:0005.10.2022HS 8 Heinz Parkus - CEE Vorlesung
Thu13:00 - 15:0006.10.2022 - 19.01.2023HS 8 Heinz Parkus - CEE Vorlesung
Thu15:00 - 17:0006.10.2022HS 8 Heinz Parkus - CEE Vorlesung
Thu08:00 - 10:0015.12.2022Seminarraum AA 02 – 1 Einsichtnahme Kolloquium
Strength of Materials - Single appointments
Wed05.10.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed05.10.202215:00 - 17:00HS 8 Heinz Parkus - CEE Vorlesung
Thu06.10.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu06.10.202215:00 - 17:00HS 8 Heinz Parkus - CEE Vorlesung
Wed12.10.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu13.10.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed19.10.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu20.10.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu27.10.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu03.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed09.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu10.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed16.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu17.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed23.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu24.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed30.11.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Thu01.12.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed07.12.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung
Wed14.12.202213:00 - 15:00HS 8 Heinz Parkus - CEE Vorlesung

Examination modalities

Written and oral exam in presence

Participation in the oral exam is only possible after successfully passing the written exam. Seperate registration via TISS required.


DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Mon14:00 - 18:0006.05.2024Seminarraum AE U1 - 7 written15.04.2024 08:00 - 03.05.2024 08:00TISSschriftliche Prüfung Festigkeitslehre 6.05.2024
Fri09:00 - 17:0017.05.2024Seminarraum AA 02 – 1 oral29.04.2024 08:00 - 14.05.2024 08:00TISSmündliche Prüfung Festigkeitslehre 17.05.2024
Mon14:00 - 18:0010.06.2024Seminarraum AE U1 - 4 written20.05.2024 08:00 - 07.06.2024 08:00TISSschriftliche Prüfung Festigkeitslehre 10.06.2024
Fri09:00 - 17:0021.06.2024Seminarraum AA 02 – 1 oral27.05.2024 08:00 - 18.06.2024 08:00TISSmündliche Prüfung Festigkeitslehre 21.06.2024
Mon10:00 - 13:0016.09.2024HS 17 Friedrich Hartmann - ARCH written26.08.2024 08:00 - 13.09.2024 08:00TISSschriftliche Prüfung Festigkeitslehre 16.09.2024
Fri09:00 - 17:0027.09.2024Seminarraum AA 02 – 1 oral02.09.2024 08:00 - 24.09.2024 08:00TISSmündliche Prüfung Festigkeitslehre 27.09.2024

Course registration

Not necessary


Study CodeObligationSemesterPrecon.Info
033 265 Civil Engineering Mandatory3. SemesterSTEOP
Course requires the completion of the introductory and orientation phase


Documents will be available online via TUWEL.

Additional Literature:

Mang, H.A, and Hofstetter, G.: Festigkeitslehre, Springer

Previous knowledge

Knowledge from lectures Mathematics 1 and 2, as well as Building Mechanics and Mechanics 1 adviseable.

Accompanying courses

Continuative courses