142.090 Statistics
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2024S, VO, 2.0h, 3.0EC

Properties

  • Semester hours: 2.0
  • Credits: 3.0
  • Type: VO Lecture
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to understand and apply the most important statistical methods required for the analysis of experimental data: graphical representation, computation of characteristic numbers, estimation of unknown parameters, testing of hypotheses, fitting of linear regression models. The students can select and apply appropriate methods for specific areas of application.

Subject of course

1. Descriptive statistics: How do I present my data in a concise, but meaningful way? 2. Stochastic modeling: How do I construct a model of my data that correctly describes the random aspects of an experiment, and which models are relevant in the experimenter's practice? 3. Parametric estimation, confidence intervals: How do I estimate physical quantities from my data, and how do I asses the uncertainty of the estimates? 4. Parametric tests: How do I test whether my data show significant deviations from theory? ? 5. Linear regression: Is there a correlation between two or more observed quantities, and how is it quantified?

Teaching methods

Practical demonstration of the methods on real or simulated data sets that are representative for the experimental situation. All algorithms are implemented in Matlab and will be given to the students along with the data sets.

Mode of examination

Written

Additional information

 

 

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Thu08:00 - 10:0007.03.2024 - 27.06.2024FH Hörsaal 4 Statistics
Mon11:00 - 13:0001.07.2024Sem.R. DA grün 04 Prüfungsvorbereitung
Statistics - Single appointments
DayDateTimeLocationDescription
Thu07.03.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu14.03.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu21.03.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu11.04.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu18.04.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu25.04.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu02.05.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu16.05.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu23.05.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu06.06.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu13.06.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu20.06.202408:00 - 10:00FH Hörsaal 4 Statistics
Thu27.06.202408:00 - 10:00FH Hörsaal 4 Statistics
Mon01.07.202411:00 - 13:00Sem.R. DA grün 04 Prüfungsvorbereitung

Examination modalities

Written examination. Pocket calculator and tables are required. A formula collection of up to 8 pages A4 is allowed. 

Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Fri10:00 - 12:0027.09.2024FH Hörsaal 3 - MATH written02.09.2024 09:00 - 23.09.2024 12:00TISS3. Prüfung 2024S
Thu10:00 - 12:0007.11.2024Sem.R. DA grün 05 written11.10.2024 09:00 - 03.11.2024 18:00TISS4. Prüfung 2024S
Fri10:00 - 12:0028.02.2025FH Hörsaal 5 - TPH written31.01.2025 09:00 - 21.02.2025 18:00TISS5. und letzte Prüfung 2024S

Course registration

Begin End Deregistration end
05.02.2024 09:00 22.03.2024 17:00 29.03.2024 17:00

Curricula

Study CodeObligationSemesterPrecon.Info
033 261 Technical Physics Not specified
066 460 Physical Energy and Measurement Engineering Mandatory2. Semester
066 460 Physical Energy and Measurement Engineering Not specified
066 461 Technical Physics Mandatory2. Semester

Literature

 The slides and the handout (2 or 4 slides per page) can be downloaded by the students.

The course is also based on my ebook  "Wahrscheinlichkeitsrechnung und Statistik: Für Studierende der Physik" (in German). It can be downloaded free of charge from:

http://bookboon.com/de/wahrscheinlichkeitsrechnung-und-statistik-eboo

For the exam you will also need the tables.

Further recommended books:

L. Lyons, A practical guide to data analysis for physical science students, Cambridge University Press, 1991.

L. Lyons, Statistics for Nuclear and Particle Physicists, Cambridge University Press, 1986.

W. Stahel, Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler, Vieweg+Teubner, 2007.

V. Blobel und E. Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner, 1998. L. Fahrmeir et al., Statistik: Der Weg zur Datenanalyse, Springer, 2007.

S. M. Ross, Statistik für Ingenieure und Naturwissenschaftler, Spektrum, 2006.

Previous knowledge

Elementary Differential and integral calculus, basic linear algebra.

Language

German