Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage...
Fachliche und methodische Kompetenzen: Studierende, die dieses Modul positiv absolviert haben,
Kognitive und praktische Kompetenzen: Studierende, die dieses Modul positiv absolviert haben,
Soziale Kompetenzen und Selbstkompetenzen: Studierende, die dieses Modul positiv absolviert haben,
Lineare Algebra und Geometrie 1+2: Matrizenrechnung, Rechen- und Lösungsverfahren für lineare Gleichungssysteme und andere Probleme in Koordinatenräumen, Determinanten. Vektorräume über beliebigen Körpern. Lineare Abbildungen, Eigenwerte, Jordan-Normalform, Räume linearer Abbildungen (insbesondere Dualraum). Determinantenformen, Bilinearformen und Sesquilinearformen. Vektorräume mit Skalarprodukt (insbesondere euklidische und unitäre Räume). Spektralsatz für selbstadjungierte Abbildungen und seine Anwendungen. Lineare Geometrie in Vektorräumen. Der Schwerpunkt liegt auf Räumen endlicher Dimension.
Vorlesung
Format der Lehrveranstaltung: Das Format der Lehrveranstaltung wird den jeweiligen Vorgaben und der pandemischen/hygienischen Situation angepasst.
Leistungsbeurteilung der Vorlesung durch eine Prüfung mit einem mündlichen und einem schriftlichen Teil.
Bitte wählen Sie bei der Anmeldung den richtigen Prüfer: HERTRICH-JEROMIN oder PINSKER
Hans Havlicek,Lineare Algebra für Technische Mathematiker, Berliner Studienreihe zur Mathematik, Band 16, 3. erweiterte und korrigierte Auflage, Heldermann, Lemgo, 2012. viii + 424 Seiten, fester Einband, ISBN-10: 3-88538-116-8, ISBN-13: 978-3-88538-116-7.
Details zu diesem Buch und ein Druckfehlerverzeichnis >>> (öffnet in neuem Fenster)
VO 104.504: Lineare Algebra und Geometrie 1.
Fachliche und methodische Kompetenzen: Elementare Mengenlehre, Grundbegriffe aus Algebra und Logik; Rechnen mit Termen, Polynomen, komplexen Zahlen; Umformen von Gleichungen und Ungleichungen; elementare Differential- und Integralrechnung; elementare ebene und räumliche Geometrie.
Kognitive und praktische Kompetenzen: Der erwartete Stoff soll soweit beherrscht werden, dass auch dazu passende, konkrete Problemstellungen gelöst werden können.
Soziale Kompetenzen und Selbstkompetenzen: Fähigkeit, die organisatorischen Herausforderungen der Vorlesungen bzw. Übungen zu bewältigen.
Es wird eine gewisse Begeisterung für die Mathematik als Ganzes erwartet.