101.334 AKANA nonlinear partial differential equations
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2024S, VO, 3.0h, 4.5EC
TUWEL

Properties

  • Semester hours: 3.0
  • Credits: 4.5
  • Type: VO Lecture
  • Format: Hybrid

Learning outcomes

After successful completion of the course, students are able to give proof for the existence of weak solutions of different classes of nonlinear elliptic and parabolic differential equations; they are able to use maximum principles for weak solutions; furthermore the students learn how to use the theory of viscous solutions for Hamilton-Jacobi-equations and to present solutions to a group of other students.

Subject of course

- semilinear elliptic equations

- quasilinear elliptic equations

- semilinear parabolic equations

- quasilinear parabolic equations

- stationary Navier-Stokes equations

- Schroedinger equations

- Hamilton-Jacobi equations

Teaching methods

Lectures and an accompanying exercise are being offered. In the lecture, the theory is introduced and examples are calculated. In addition, a script is offered to deepen the lecture material.
In the accompanying exercise, weekly exercise sheets are handed out, which are calculated by the students in the exercise on the blackboard.

Mode of examination

Oral

Additional information

The course will be held in person apart from a few exceptions. The announcement of the specific exceptions (online) and the further communication for the lecture takes place through the assigned TUWEL course.

Lecture notes (German) are available on the webpage: https://www.asc.tuwien.ac.at/juengel/scripts/nPDE.pdf
The English version is available in the assigned TUWEL course.

The first lecture will be held on: Tuesday, 05.03.2024, 13.30-15.00.

 

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Tue13:30 - 15:0005.03.2024 - 25.06.2024Sem.R. DA grün 06B Dr. Schuh
Thu16:00 - 18:0014.03.2024 - 27.06.2024Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
AKANA nonlinear partial differential equations - Single appointments
DayDateTimeLocationDescription
Tue05.03.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Tue12.03.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu14.03.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Tue19.03.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu21.03.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Tue09.04.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu11.04.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Tue16.04.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu18.04.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Tue23.04.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu25.04.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Tue30.04.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu02.05.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Tue07.05.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Tue14.05.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu16.05.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Thu23.05.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen
Tue28.05.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Tue04.06.202413:30 - 15:00Sem.R. DA grün 06B Dr. Schuh
Thu06.06.202416:00 - 18:00Sem.R. DA grün 06B VO AKANA Nichtlin. part. Diffgleichungen

Examination modalities

Exercises and presentation on the blackboard for UE; oral exam for VO

In case that the oral exam is offered(needs to be offered online: Two devices with camera (e.g. laptop or tablet and smartphone) are needed.

Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Fri09:30 - 11:3004.10.2024 Office of Prof. Jüngel DA 03 L04; Exam registration by mail to: nina.haberle@asc.tuwien.ac.atoral03.09.2024 00:00 - 01.10.2024 23:59on instituteProf. Jüngel

Course registration

Begin End Deregistration end
22.02.2024 00:00 20.03.2024 00:00 25.02.2024 00:00

Curricula

Study CodeObligationSemesterPrecon.Info
860 GW Optional Courses - Technical Mathematics Not specified

Literature

Lecture notes for this course are available; online auf der Homepage des Vortragenden

https://www.asc.tuwien.ac.at/juengel/scripts/nPDE.pdf

Further teaching material can be found at Tuwel.

Previous knowledge

Linear partial differential equations; functional analysis

 

Language

if required in English